Stochastic heat equations with logarithmic nonlinearity

نویسندگان

چکیده

In this paper, we establish the global existence and uniqueness of solutions to stochastic heat equations with logarithmic nonlinearity driven by Brownian motion on a bounded domain D in setting L2(D) space. The result is valid for all initial values contrast existing literature. Sobolev inequality plays an important role.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic evolution equations with multiplicative Poisson noise and monotone nonlinearity

Semilinear stochastic evolution equations with multiplicative Poisson noise and monotone nonlinear drift in Hilbert spaces are considered‎. ‎The coefficients are assumed to have linear growth‎. ‎We do not impose coercivity conditions on coefficients‎. ‎A novel method of proof for establishing existence and uniqueness of the mild solution is proposed‎. ‎Examples on stochastic partial differentia...

متن کامل

Continuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity

Semilinear stochastic evolution equations with multiplicative L'evy noise are considered‎. ‎The drift term is assumed to be monotone nonlinear and with linear growth‎. ‎Unlike other similar works‎, ‎we do not impose coercivity conditions on coefficients‎. ‎We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. ‎As corollaries of ...

متن کامل

Blow-Up Time for Nonlinear Heat Equations with Transcendental Nonlinearity

where x ∈ R, F is a given nonlinear function and u is unknown. Due to the mathematical and physical importance, existence and uniqueness theories of solutions of nonlinear heat equations have been extensively studied by many mathematicians and physicists, for example, 1–10 and references therein. Unlike other studies, we focus on the nonlinear heat equations with transcendental nonlinearities s...

متن کامل

Dissipative backward stochastic differential equations with locally Lipschitz nonlinearity

In this paper we study a class of backward stochastic differential equations (BSDEs) of the form dYt = −AYtdt−f0(t, Yt)dt−f1(t, Yt, Zt)dt+ZtdWt, 0 ≤ t ≤ T ; YT = ξ in an infinite dimensional Hilbert space H , where the unbounded operator A is sectorial and dissipative and the nonlinearity f0(t, y) is dissipative and defined for y only taking values in a subspace of H . A typical example is prov...

متن کامل

continuous dependence on coefficients for stochastic evolution equations with multiplicative l'evy noise and monotone nonlinearity

semilinear stochastic evolution equations with multiplicative l'evy noise are considered‎. ‎the drift term is assumed to be monotone nonlinear and with linear growth‎. ‎unlike other similar works‎, ‎we do not impose coercivity conditions on coefficients‎. ‎we establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. ‎as corollaries of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2022

ISSN: ['1090-2732', '0022-0396']

DOI: https://doi.org/10.1016/j.jde.2021.12.033